Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Comparative CFD exercise on bubble hydrodynamics using Euler-Euler and interface tracking approaches

Dehbi, A.*; Cheng, X.*; Liao, Y.*; Okagaki, Yuria; Pellegrini, M.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 15 Pages, 2022/03

Journal Articles

Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder

Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02

 Times Cited Count:31 Percentile:98.32(Mechanics)

A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.

Journal Articles

Numerical study on the potential of cavitation damage in a lead-bismuth eutectic spallation target

Wan, T.; Naoe, Takashi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Obayashi, Hironari; Sasa, Toshinobu

Materials, 12(4), p.681_1 - 681_15, 2019/02

 Times Cited Count:3 Percentile:17.96(Chemistry, Physical)

Journal Articles

Numerical study on effect of pressure on behavior of bubble coalescence by using CMFD simulation

Ono, Ayako; Suzuki, Takayuki*; Yoshida, Hiroyuki

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07

The mechanism of critical heat flux (CHF) for higher system pressure remains to be clarified, even though it is important to evaluate the CHF for the light water reactor (LWR) which is operated under the high pressure condition. In this study, the process of bubble coalescence was simulated by using a computational multi-fluid dynamics (CMFD) simulation code TPFIT under various system pressure in order to investigate the behavior of bubbles as a basic study. The growth of bubbles was simulated by blowing of vapor from a tiny orifice simulating bubble bottom. One or four orifices were located on the bottom surface in this simulation study. The numerical simulations were conducted by varying the pressure and temperature.

Journal Articles

Pitting damage by pressure waves in a mercury target

Futakawa, Masatoshi; Naoe, Takashi; Tsai, C.-C.*; Kogawa, Hiroyuki; Ishikura, Shuichi*; Ikeda, Yujiro; Soyama, Hitoshi*; Date, Hidefumi*

Journal of Nuclear Materials, 343(1-3), p.70 - 80, 2005/08

 Times Cited Count:57 Percentile:95.59(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique

Ida, Masato

Journal of the Physical Society of Japan, 73(11), p.3026 - 3033, 2004/11

 Times Cited Count:8 Percentile:48.29(Physics, Multidisciplinary)

The theoretical results regarding the "transition frequencies" of two acoustically interacting bubbles have been verified numerically. The theory provided by Ida [Phys Lett A (2002)] predicted the existence of three transition frequencies per bubble, each of which has the phase difference of $$pi /2$$ between a bubble's pulsation and the external sound. In a subsequent paper [Phys Rev E (2003)], it was shown theoretically that transition frequencies may cause the sign reversal of the secondary Bjerknes force. In this paper, we employ a DNS technique to verify those results. The numerical results reproduce the theoretical predictions, validating the existence of the transition frequencies.

Journal Articles

Micro pit formation by mercury-sphere collision

Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro; Saito, Masakatsu*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(1), p.59 - 66, 2004/03

The development of a MW-class spallation neutron source facility is being carried out under the Japan Proton Accelerator Research Complex (J-PARC) Project promoted by JAERI and KEK. A mercury target working as the spallation neutron source will be subjected to pressure waves generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will impose dynamic stress on the vessel and deform the vessel, which would cause cavitation in mercury. To evaluate the effect of mercury micro jets, driven by cavitation bubble collapse, on the micro-pit formation, analyses on mercury sphere collision were carried out: single bubble dynamics and collision behavior on interface between liquid and solid, which take the nonlinearity due to shock wave in mercury and the strain rate dependency of yield stress in solid metal into account. Analytical results give a good explanation to understand relationship between the micro-pit formation and material properties: the pit size could decrease with increasing the yield strength of materials.

Journal Articles

Bubble dynamics in the thermal shock problem of the liquid metal target

Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Hino, Ryutaro; Arakawa, Chuichi

Journal of Nuclear Materials, 318, p.113 - 121, 2003/05

 Times Cited Count:12 Percentile:62.23(Materials Science, Multidisciplinary)

The thermal shock stress in the mercury target vessel was analyzed: the target receives the incident proton beam at the energy of 1 MW with the pulse duration of 1ms. Negative pressure of maximal 61MPa was generated when the initial pressure of 52MPa propagated in mercury. It is expected then that the cavitation may be arisen by the negative pressure. So in order to know the cavitation behavior, the simulation study was carried out by using the equation of motion based on the bubble dynamics for a single bubble, and fundamental parameter analysis was carried out. It is found that a bubble has a potential expansion more than 1000 times with a change of the pressure at the window of the target vessel. Consequently wave propagation will be affected. Theoretical consideration was given to the wave motion of propagation in bubbly liquid. The equation of state in bubbly liquid can be approximated by the polynomial. The diameter of a bubble and the bubble volume fraction inherent in mercury can be decided if the critical pressure, the sound velocity, and resonance frequency is successfully measured by static and dynamic experiment.

Journal Articles

Direct numerical algorithm for multiphase flow with free surfaces and interfaces

Kunugi, Tomoaki

Nihon Kikai Gakkai Rombunshu, B, 63(609), p.88 - 96, 1997/05

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1